3.5.92 \(\int \sec ^4(c+d x) (a+b \sin (c+d x))^{3/2} \, dx\) [492]

Optimal. Leaf size=218 \[ -\frac {\sec (c+d x) (b-4 a \sin (c+d x)) \sqrt {a+b \sin (c+d x)}}{6 d}+\frac {\sec ^3(c+d x) (b+a \sin (c+d x)) \sqrt {a+b \sin (c+d x)}}{3 d}-\frac {2 a E\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (c+d x)}}{3 d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {\left (4 a^2-b^2\right ) F\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{6 d \sqrt {a+b \sin (c+d x)}} \]

[Out]

-1/6*sec(d*x+c)*(b-4*a*sin(d*x+c))*(a+b*sin(d*x+c))^(1/2)/d+1/3*sec(d*x+c)^3*(b+a*sin(d*x+c))*(a+b*sin(d*x+c))
^(1/2)/d+2/3*a*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticE(cos(1/2*c+1/4*Pi+1/2*d*
x),2^(1/2)*(b/(a+b))^(1/2))*(a+b*sin(d*x+c))^(1/2)/d/((a+b*sin(d*x+c))/(a+b))^(1/2)-1/6*(4*a^2-b^2)*(sin(1/2*c
+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticF(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2)*(b/(a+b))^(1/2
))*((a+b*sin(d*x+c))/(a+b))^(1/2)/d/(a+b*sin(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.28, antiderivative size = 218, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {2770, 2945, 2831, 2742, 2740, 2734, 2732} \begin {gather*} \frac {\left (4 a^2-b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} F\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{6 d \sqrt {a+b \sin (c+d x)}}+\frac {\sec ^3(c+d x) (a \sin (c+d x)+b) \sqrt {a+b \sin (c+d x)}}{3 d}-\frac {\sec (c+d x) (b-4 a \sin (c+d x)) \sqrt {a+b \sin (c+d x)}}{6 d}-\frac {2 a \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{3 d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^4*(a + b*Sin[c + d*x])^(3/2),x]

[Out]

-1/6*(Sec[c + d*x]*(b - 4*a*Sin[c + d*x])*Sqrt[a + b*Sin[c + d*x]])/d + (Sec[c + d*x]^3*(b + a*Sin[c + d*x])*S
qrt[a + b*Sin[c + d*x]])/(3*d) - (2*a*EllipticE[(c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqrt[a + b*Sin[c + d*x]])/(
3*d*Sqrt[(a + b*Sin[c + d*x])/(a + b)]) + ((4*a^2 - b^2)*EllipticF[(c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqrt[(a
+ b*Sin[c + d*x])/(a + b)])/(6*d*Sqrt[a + b*Sin[c + d*x]])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2770

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(-(g*C
os[e + f*x])^(p + 1))*(a + b*Sin[e + f*x])^(m - 1)*((b + a*Sin[e + f*x])/(f*g*(p + 1))), x] + Dist[1/(g^2*(p +
 1)), Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 2)*(b^2*(m - 1) + a^2*(p + 2) + a*b*(m + p + 1)*S
in[e + f*x]), x], x] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 1] && LtQ[p, -1] && (Integers
Q[2*m, 2*p] || IntegerQ[m])

Rule 2831

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 2945

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)]), x_Symbol] :> Simp[(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m + 1)*((b*c - a*d - (a*c -
b*d)*Sin[e + f*x])/(f*g*(a^2 - b^2)*(p + 1))), x] + Dist[1/(g^2*(a^2 - b^2)*(p + 1)), Int[(g*Cos[e + f*x])^(p
+ 2)*(a + b*Sin[e + f*x])^m*Simp[c*(a^2*(p + 2) - b^2*(m + p + 2)) + a*b*d*m + b*(a*c - b*d)*(m + p + 3)*Sin[e
 + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[a^2 - b^2, 0] && LtQ[p, -1] && IntegerQ[2*m]

Rubi steps

\begin {align*} \int \sec ^4(c+d x) (a+b \sin (c+d x))^{3/2} \, dx &=\frac {\sec ^3(c+d x) (b+a \sin (c+d x)) \sqrt {a+b \sin (c+d x)}}{3 d}-\frac {1}{3} \int \frac {\sec ^2(c+d x) \left (-2 a^2+\frac {b^2}{2}-\frac {3}{2} a b \sin (c+d x)\right )}{\sqrt {a+b \sin (c+d x)}} \, dx\\ &=-\frac {\sec (c+d x) (b-4 a \sin (c+d x)) \sqrt {a+b \sin (c+d x)}}{6 d}+\frac {\sec ^3(c+d x) (b+a \sin (c+d x)) \sqrt {a+b \sin (c+d x)}}{3 d}+\frac {\int \frac {-\frac {1}{4} b^2 \left (a^2-b^2\right )-a b \left (a^2-b^2\right ) \sin (c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx}{3 \left (a^2-b^2\right )}\\ &=-\frac {\sec (c+d x) (b-4 a \sin (c+d x)) \sqrt {a+b \sin (c+d x)}}{6 d}+\frac {\sec ^3(c+d x) (b+a \sin (c+d x)) \sqrt {a+b \sin (c+d x)}}{3 d}-\frac {1}{3} a \int \sqrt {a+b \sin (c+d x)} \, dx+\frac {1}{12} \left (4 a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \sin (c+d x)}} \, dx\\ &=-\frac {\sec (c+d x) (b-4 a \sin (c+d x)) \sqrt {a+b \sin (c+d x)}}{6 d}+\frac {\sec ^3(c+d x) (b+a \sin (c+d x)) \sqrt {a+b \sin (c+d x)}}{3 d}-\frac {\left (a \sqrt {a+b \sin (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}} \, dx}{3 \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {\left (\left (4 a^2-b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}} \, dx}{12 \sqrt {a+b \sin (c+d x)}}\\ &=-\frac {\sec (c+d x) (b-4 a \sin (c+d x)) \sqrt {a+b \sin (c+d x)}}{6 d}+\frac {\sec ^3(c+d x) (b+a \sin (c+d x)) \sqrt {a+b \sin (c+d x)}}{3 d}-\frac {2 a E\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (c+d x)}}{3 d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {\left (4 a^2-b^2\right ) F\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{6 d \sqrt {a+b \sin (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 2.35, size = 211, normalized size = 0.97 \begin {gather*} \frac {16 a (a+b) E\left (\frac {1}{4} (-2 c+\pi -2 d x)|\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}-4 \left (4 a^2-b^2\right ) F\left (\frac {1}{4} (-2 c+\pi -2 d x)|\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}+\sec ^3(c+d x) \left (12 a b-6 a b \cos (2 (c+d x))-2 a b \cos (4 (c+d x))+12 a^2 \sin (c+d x)+7 b^2 \sin (c+d x)+4 a^2 \sin (3 (c+d x))-b^2 \sin (3 (c+d x))\right )}{24 d \sqrt {a+b \sin (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^4*(a + b*Sin[c + d*x])^(3/2),x]

[Out]

(16*a*(a + b)*EllipticE[(-2*c + Pi - 2*d*x)/4, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)] - 4*(4*a^2 -
b^2)*EllipticF[(-2*c + Pi - 2*d*x)/4, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)] + Sec[c + d*x]^3*(12*a
*b - 6*a*b*Cos[2*(c + d*x)] - 2*a*b*Cos[4*(c + d*x)] + 12*a^2*Sin[c + d*x] + 7*b^2*Sin[c + d*x] + 4*a^2*Sin[3*
(c + d*x)] - b^2*Sin[3*(c + d*x)]))/(24*d*Sqrt[a + b*Sin[c + d*x]])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(937\) vs. \(2(264)=528\).
time = 2.54, size = 938, normalized size = 4.30

method result size
default \(\frac {-\sqrt {b \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+a \left (\cos ^{2}\left (d x +c \right )\right )}\, b \left (4 a^{2}-b^{2}\right ) \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right )-2 \sqrt {b \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+a \left (\cos ^{2}\left (d x +c \right )\right )}\, b \left (a^{2}+b^{2}\right ) \sin \left (d x +c \right )+4 \sqrt {b \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+a \left (\cos ^{2}\left (d x +c \right )\right )}\, a \,b^{2} \left (\cos ^{4}\left (d x +c \right )\right )+\sqrt {b \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+a \left (\cos ^{2}\left (d x +c \right )\right )}\, \left (4 \sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}\, \sqrt {-\frac {b \sin \left (d x +c \right )}{a +b}+\frac {b}{a +b}}\, \sqrt {-\frac {b \sin \left (d x +c \right )}{a -b}-\frac {b}{a -b}}\, \EllipticF \left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a^{2} b -3 \EllipticF \left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) \sqrt {-\frac {b \sin \left (d x +c \right )}{a +b}+\frac {b}{a +b}}\, \sqrt {-\frac {b \sin \left (d x +c \right )}{a -b}-\frac {b}{a -b}}\, \sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}\, a \,b^{2}-\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}\, \sqrt {-\frac {b \sin \left (d x +c \right )}{a +b}+\frac {b}{a +b}}\, \sqrt {-\frac {b \sin \left (d x +c \right )}{a -b}-\frac {b}{a -b}}\, \EllipticF \left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) b^{3}-4 \sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}\, \sqrt {-\frac {b \sin \left (d x +c \right )}{a +b}+\frac {b}{a +b}}\, \sqrt {-\frac {b \sin \left (d x +c \right )}{a -b}-\frac {b}{a -b}}\, \EllipticE \left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a^{3}+4 \sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}\, \sqrt {-\frac {b \sin \left (d x +c \right )}{a +b}+\frac {b}{a +b}}\, \sqrt {-\frac {b \sin \left (d x +c \right )}{a -b}-\frac {b}{a -b}}\, \EllipticE \left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a \,b^{2}-a \,b^{2}\right ) \left (\cos ^{2}\left (d x +c \right )\right )-4 \sqrt {b \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+a \left (\cos ^{2}\left (d x +c \right )\right )}\, a \,b^{2}}{6 \left (1+\sin \left (d x +c \right )\right ) \sqrt {-\left (a +b \sin \left (d x +c \right )\right ) \left (\sin \left (d x +c \right )-1\right ) \left (1+\sin \left (d x +c \right )\right )}\, \left (\sin \left (d x +c \right )-1\right ) b \cos \left (d x +c \right ) \sqrt {a +b \sin \left (d x +c \right )}\, d}\) \(938\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^4*(a+b*sin(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/6*(-(b*cos(d*x+c)^2*sin(d*x+c)+a*cos(d*x+c)^2)^(1/2)*b*(4*a^2-b^2)*sin(d*x+c)*cos(d*x+c)^2-2*(b*cos(d*x+c)^2
*sin(d*x+c)+a*cos(d*x+c)^2)^(1/2)*b*(a^2+b^2)*sin(d*x+c)+4*(b*cos(d*x+c)^2*sin(d*x+c)+a*cos(d*x+c)^2)^(1/2)*a*
b^2*cos(d*x+c)^4+(b*cos(d*x+c)^2*sin(d*x+c)+a*cos(d*x+c)^2)^(1/2)*(4*(b/(a-b)*sin(d*x+c)+1/(a-b)*a)^(1/2)*(-b/
(a+b)*sin(d*x+c)+b/(a+b))^(1/2)*(-b/(a-b)*sin(d*x+c)-b/(a-b))^(1/2)*EllipticF((b/(a-b)*sin(d*x+c)+1/(a-b)*a)^(
1/2),((a-b)/(a+b))^(1/2))*a^2*b-3*EllipticF((b/(a-b)*sin(d*x+c)+1/(a-b)*a)^(1/2),((a-b)/(a+b))^(1/2))*(-b/(a+b
)*sin(d*x+c)+b/(a+b))^(1/2)*(-b/(a-b)*sin(d*x+c)-b/(a-b))^(1/2)*(b/(a-b)*sin(d*x+c)+1/(a-b)*a)^(1/2)*a*b^2-(b/
(a-b)*sin(d*x+c)+1/(a-b)*a)^(1/2)*(-b/(a+b)*sin(d*x+c)+b/(a+b))^(1/2)*(-b/(a-b)*sin(d*x+c)-b/(a-b))^(1/2)*Elli
pticF((b/(a-b)*sin(d*x+c)+1/(a-b)*a)^(1/2),((a-b)/(a+b))^(1/2))*b^3-4*(b/(a-b)*sin(d*x+c)+1/(a-b)*a)^(1/2)*(-b
/(a+b)*sin(d*x+c)+b/(a+b))^(1/2)*(-b/(a-b)*sin(d*x+c)-b/(a-b))^(1/2)*EllipticE((b/(a-b)*sin(d*x+c)+1/(a-b)*a)^
(1/2),((a-b)/(a+b))^(1/2))*a^3+4*(b/(a-b)*sin(d*x+c)+1/(a-b)*a)^(1/2)*(-b/(a+b)*sin(d*x+c)+b/(a+b))^(1/2)*(-b/
(a-b)*sin(d*x+c)-b/(a-b))^(1/2)*EllipticE((b/(a-b)*sin(d*x+c)+1/(a-b)*a)^(1/2),((a-b)/(a+b))^(1/2))*a*b^2-a*b^
2)*cos(d*x+c)^2-4*(b*cos(d*x+c)^2*sin(d*x+c)+a*cos(d*x+c)^2)^(1/2)*a*b^2)/(1+sin(d*x+c))/(-(a+b*sin(d*x+c))*(s
in(d*x+c)-1)*(1+sin(d*x+c)))^(1/2)/(sin(d*x+c)-1)/b/cos(d*x+c)/(a+b*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4*(a+b*sin(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((b*sin(d*x + c) + a)^(3/2)*sec(d*x + c)^4, x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.13, size = 481, normalized size = 2.21 \begin {gather*} \frac {12 i \, \sqrt {2} a \sqrt {i \, b} b \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 i \, a^{3} - 9 i \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 i \, a^{3} - 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) - 2 i \, a}{3 \, b}\right )\right ) - 12 i \, \sqrt {2} a \sqrt {-i \, b} b \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (-8 i \, a^{3} + 9 i \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (-8 i \, a^{3} + 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 i \, a}{3 \, b}\right )\right ) + \sqrt {2} {\left (8 \, a^{2} - 3 \, b^{2}\right )} \sqrt {i \, b} \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 i \, a^{3} - 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) - 2 i \, a}{3 \, b}\right ) + \sqrt {2} {\left (8 \, a^{2} - 3 \, b^{2}\right )} \sqrt {-i \, b} \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (-8 i \, a^{3} + 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 i \, a}{3 \, b}\right ) - 6 \, {\left (b^{2} \cos \left (d x + c\right )^{2} - 2 \, b^{2} - 2 \, {\left (2 \, a b \cos \left (d x + c\right )^{2} + a b\right )} \sin \left (d x + c\right )\right )} \sqrt {b \sin \left (d x + c\right ) + a}}{36 \, b d \cos \left (d x + c\right )^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4*(a+b*sin(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/36*(12*I*sqrt(2)*a*sqrt(I*b)*b*cos(d*x + c)^3*weierstrassZeta(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*I*a^3 - 9*I
*a*b^2)/b^3, weierstrassPInverse(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*I*a^3 - 9*I*a*b^2)/b^3, 1/3*(3*b*cos(d*x +
 c) - 3*I*b*sin(d*x + c) - 2*I*a)/b)) - 12*I*sqrt(2)*a*sqrt(-I*b)*b*cos(d*x + c)^3*weierstrassZeta(-4/3*(4*a^2
 - 3*b^2)/b^2, -8/27*(-8*I*a^3 + 9*I*a*b^2)/b^3, weierstrassPInverse(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(-8*I*a^3
 + 9*I*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2*I*a)/b)) + sqrt(2)*(8*a^2 - 3*b^2)*sqrt(I*b)
*cos(d*x + c)^3*weierstrassPInverse(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*I*a^3 - 9*I*a*b^2)/b^3, 1/3*(3*b*cos(d*
x + c) - 3*I*b*sin(d*x + c) - 2*I*a)/b) + sqrt(2)*(8*a^2 - 3*b^2)*sqrt(-I*b)*cos(d*x + c)^3*weierstrassPInvers
e(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(-8*I*a^3 + 9*I*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2*I
*a)/b) - 6*(b^2*cos(d*x + c)^2 - 2*b^2 - 2*(2*a*b*cos(d*x + c)^2 + a*b)*sin(d*x + c))*sqrt(b*sin(d*x + c) + a)
)/(b*d*cos(d*x + c)^3)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**4*(a+b*sin(d*x+c))**(3/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 8009 deep

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4*(a+b*sin(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (a+b\,\sin \left (c+d\,x\right )\right )}^{3/2}}{{\cos \left (c+d\,x\right )}^4} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*sin(c + d*x))^(3/2)/cos(c + d*x)^4,x)

[Out]

int((a + b*sin(c + d*x))^(3/2)/cos(c + d*x)^4, x)

________________________________________________________________________________________